Data structures

Computer Science Enrichment Club - Algorithms Division

October 27, 2017



Today we're going to cover

Review the Union-Find data structure, and look at applications

Study range queries

Quick look at Square Root Decomposition

e Learn about Segment Trees



e We have n items
e Maintains a collection of disjoint sets

e Each of the n items is in exactly one set

e jtems = {1,2,3,4,5,6}
e collections = {1,4},{3,5,6}, {2}
e collections = {1}, {2}, {3}, {4}, {5}, {6}

e Supports two operations efficiently: find(x) and union(x,y).



e jtems = {1,2,3,4,5,6}
e collections = {1,4},{3,5,6},{2}

e find(x) returns a representative item from the set that x is in

e find(1) =1
e find(4) =1

e find(3) = 5
e find(5) = 5
e find(6) = 5

e find(2) = 2

e 2 and b are in the same set if and only if
find(a) == find(b)



e items = {1,2,3,4,5,6}
e collections = {1,4},{3,5,6}, {2}

e union(x, y) merges the set containing x and the set containing y
together.

e union(4, 2)

e collections = {1,2,4},{3,5,6}
e union(3, 6)

e collections = {1,2,4},{3,5,6}
e union(2, 6)

e collections = {1,2,3,4,5,6}



Union-Find implementation

e Quick Union with path compression
e Extremely simple implementation
e Extremely efficient

struct union_find {
vector<int> parent;
union_find(int n) {
parent = vector<int>(n);
for (int 1 = 0; i < n; i++) {

parent[i] = i;

// find and union



Union-Find implementation

// find and union

int find(int x) {
if (parent[x] == x) {
return x;
} else {
parent [x] = find(parent[x]);

return parent[x];

void unite(int x, int y) {
parent [find(x)] = find(y);



Union-Find implementation (short)

e If you're in a hurry...

#define MAXN 1000
int p[MAXN];

int find(int x) {
return plx] == x 7 x : plx] = find(p[x1); }

void unite(int x, int y) { p[find(x)] = find(y); }

for (int i = 0; i < MAXN; i++) pl[i] = 1i;



Union-Find applications

e Union-Find maintains a collection of disjoint sets
e When are we dealing with such collections?

e Most common example is in graphs



Disjoint sets in graphs



Disjoint sets in graphs

e jtems = {1,2,3,4,5,6,7}



Disjoint sets in graphs

e jtems = {1,2,3,4,5,6,7}
e collections = {1,4,7},{2},{3,5,6}



Disjoint sets in graphs

e jtems = {1,2,3,4,5,6,7}
e collections = {1,4,7},{2},{3,5,6}

e union(2, 5)



Disjoint sets in graphs

e jtems = {1,2,3,4,5,6,7}
e collections = {1,4,7},{2,3,5,6}



Disjoint sets in graphs

0‘3

e jtems = {1,2,3,4,5,6,7}
e collections = {1,4,7},{2,3,5,6}

e union(6, 2)



Disjoint sets in graphs

e jtems = {1,2,3,4,5,6,7}
e collections = {1,4,7},{2,3,5,6}



Example problem: Where's My Internet??

e https://open.kattis.com/problems/wheresmyinternet

12



e We have an array A of size n
e Given /,j, we want to answer:
o max(A[i],Ali +1],..., Al — 1], Al)])
o min(A[/],Ali +1],..., Al — 1], Alj])
o sum(A[/], Ali +1],..., A — 1], Al]])
e We want to answer these queries efficiently, i.e. without looking
through all elements

Sometimes we also want to update elements

13



Range sum on a static array

e Let's look at range sums on a static array (i.e. updating is not
supported)

[1[of7[8]5]9]3]

14



Range sum on a static array

e Let's look at range sums on a static array (i.e. updating is not

supported)

[1[of7[8]5]e]3]

e sum(0,6)

14



Range sum on a static array

e Let's look at range sums on a static array (i.e. updating is not

supported)

[1[of7[8]5]e]3]

e sum(0,6) = 33

14



Range sum on a static array

e Let's look at range sums on a static array (i.e. updating is not

supported)

[1[of7[8]5]9]3]

e sum(0,6) = 33
e sum(2,5)

14



Range sum on a static array

e Let's look at range sums on a static array (i.e. updating is not

supported)

[1[of7[8]5]9]3]

e sum(0,6) = 33
e sum(2,5) =29

14



Range sum on a static array

Let’s look at range sums on a static array (i.e. updating is not

supported)

[1[of7[8]s]9]3]

e sum(2,5) =29
e sum(2,2)

?

14



Range sum on a static array

Let’s look at range sums on a static array (i.e. updating is not

supported)

[1[of7[8]s]9]3]

e sum(2,5) =29
o sum(2,2) =

?

14



Range sum on a static array

e Let's look at range sums on a static array (i.e. updating is not
supported)

[1[of7[8]5]9]3]

e sum(0,6) = 33
e sum(2,5) =29
o sum(2,2) =

?

e How do we support these queries efficiently?

14



Range sum on a static array

e Simplification: only support queries of the form sum(0, ;)

e Notice that sum(/, ) = sum(0, j) — sum(0,/ — 1)

[1[of7[8]s]o]3]

[1[of7[8]s]9]3]

[1[of7[8]s]9]3]

15



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

16



Range sum on a static array

e So we're only interested in prefix sums

e But there are only n of them...

Just compute them all once in the beginning

e O(n) time to preprocess

e O(1) time each query

e Can we support updating efficiently?

16



Range sum on a static array

e So we're only interested in prefix sums
e But there are only n of them...

e Just compute them all once in the beginning

e O(n) time to preprocess

e O(1) time each query

e Can we support updating efficiently? No, at least not without
modification

16



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[8]s]9]3]

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[8]s]9]3]

e sum(0,6)

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[8]s]9]3]

e sum(0,6) = 33

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[8]s]9]3]

e sum(0,6) = 33
e update(3, —2)

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[-2]5]9]3]

e sum(0,6) = 33
e update(3, —2)

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[-2]5]9]3]

sum(0, 6) = 33
update(3, —2)
sum(0, 6)

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[-2]5]9]3]

sum(0, 6) = 33
update(3, —2)
sum(0, 6) = 23

17



Range sum on a dynamic array

e What if we want to support:

e sum over a range
e updating an element

[1[of7[-2]5]9]3]

sum(0, 6) = 33
update(3, —2)
sum(0, 6) = 23

How do we support these queries efficiently?

17



First attempt: Buckets

e Group values into buckets of size k

o Eg k=2

[1[of7[8]s]9]3]

18



First attempt: Buckets

e Group values into buckets of size k

o Eg k=2

[1fof7]e]5]9]3]

18



First attempt: Buckets

e Group values into buckets of size k

o Eg k=2

[1fof7]e]5]9]3]

e There are roughly n/k buckets

18



First attempt: Buckets

Group values into buckets of size k

o Eg k=2

[1fof7]e]5]9]3]

There are roughly n/k buckets

e Store the sum of elements inside each bucket:

18



First attempt: Buckets

Group values into buckets of size k

Eg k=2

[1fof7]e]5]9]3]

There are roughly n/k buckets

Store the sum of elements inside each bucket:

|1]15][14 ]3]

18



Buckets: Updating

[1fof7]s]5]9]3]

[1]15][14 ]3]

e Updating is easy:
e change the array element
e recompute corresponding bucket

19



Buckets: Updating

[1fof7]s]5]9]3]

[1]15][14 ]3]

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)

19



Buckets: Updating

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)

19



Buckets: Updating

[1fof7]-2]5]9]3]

[1]15][14 ]3]

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)

19



Buckets: Updating

[1fof7]-2]5]9]3]

|1]15][14 ]3]

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)

19



Buckets: Updating

[1fof7]-2]5]9]3]

|1]15][14 ]3]

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)

19



Buckets: Updating

[1fof7]-2]5]9]3]

ENENEINEN

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)

19



Buckets: Updating

[1fof7]-2]5]9]3]

ENENEINEN

e Updating is easy:
e change the array element
e recompute corresponding bucket

e update(3, —2)
e Time complexity: O(k)

19



Buckets: Updating

[1fof7]-2]5]9]3]

ENENEINEN

Updating is easy:
e change the array element
e recompute corresponding bucket

update(3, —2)
Time complexity: O(k)

Easy to do in O(1), but doesn't really matter (we'll see why)

19



Buckets: Querying

[1fof7]s]5]o]3]

|1]15]14 ]3]

e Again we want to query over a range

e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k

20



Buckets: Querying

[1fof7]e]5]o]3]

|1]15]14 ]3]

e Again we want to query over a range

e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k

e query(1,5)

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range

e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k

e query(1,5)

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range

e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k

e query(1,5) =0+ 15+ 14 =29

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range

e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k

e query(1,5) =0+ 15+ 14 =29
e What about time complexity?

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range
e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k
e query(1,5)=0+15+14 =29
e What about time complexity?

e Only have to go inside at most two buckets (each end)

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range
e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k
e query(1,5)=0+15+14 =29
e What about time complexity?

e Only have to go inside at most two buckets (each end)
e Have to consider at most n/k buckets

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range
e When a bucket is contained in the range, use the stored sum for the
bucket
e This (sometimes) allows us to “jump” over intervals of size k
e query(1,5)=0+15+14 =29
e What about time complexity?

e Only have to go inside at most two buckets (each end)
e Have to consider at most n/k buckets
e In total roughly n/k + 2k

20



Buckets: Querying

[1fof7]e]5]o]3]

[1]15][14 ]3]

e Again we want to query over a range

e When a bucket is contained in the range, use the stored sum for the
bucket

e This (sometimes) allows us to “jump” over intervals of size k
e query(1,5) =0+ 15+ 14 =29
e What about time complexity?

e Only have to go inside at most two buckets (each end)
e Have to consider at most n/k buckets

e In total roughly n/k + 2k

e Time complexity: O(n/k + k)

20



Buckets: Choosing k

e Now we have a data structure that supports:
e Updating in O(k)
e Querying in O(n/k + k)

e What k to pick?

21



Buckets: Choosing k

e Now we have a data structure that supports:
e Updating in O(k)
e Querying in O(n/k + k)

e What k to pick?

e Time complexity is minimized for k = \/n:

e Updating in O(v/n)
e Querying in O(n/+/fi+ v/A) = O(v/F)

21



Buckets: Choosing k

e Now we have a data structure that supports:
e Updating in O(k)
e Querying in O(n/k + k)
What k to pick?
e Time complexity is minimized for k = \/n:
e Updating in O(v/n)
e Querying in O(n//n+ /n) = O(y/n)

e Also known as square root decomposition, and is a very powerful

technique

21



Example problem: Supercomputer

e https://open.kattis.com/problems/supercomputer

22



e Now we know how to do these queries in O(+/n)

e May be too slow if n is large and many queries

e Can we do better?

23



Second attempt: Segment Tree

[1[of7[8]s]9]3]

24



Second attempt: Segment Tree

0000000

[1[of7[8]s]9]3]

24



Second attempt: Segment Tree

Soobe

[1[of7[8]s]9]3]

24



Second attempt: Segment Tree

[1[of7[8]s]9]3]

24



Second attempt: Segment Tree

[1[of7[8]s]9]3]

24



Second attempt: Segment Tree

[1[of7[8]s]9]3]

e Each vertex contains the sum of some segment of the array

24



gment Tree - Code

struct segment_tree {
segment_tree *left, *right;
int from, to, value;
segment_tree(int from, int to)
from(from), to(to), left(NULL), right(NULL), value(0) { }
g

segment_tree* build(const vector<int> &arr, int 1, int r) {
if (1 > r) return NULL;
segment_tree *res = new segment_tree(l, r);
if (1 ==1) {
res->value = arr[1];
} else {
intm= (1 +1r) / 2;
res->left = build(arr, 1, m);
res->right = build(arr, m + 1, r);
if (res->left != NULL) res->value += res->left->value;
if (res->right != NULL) res->value += res->right->value;
¥

return res;

25



Querying a Segment Tree

26



Querying a Segment Tree

e sum(0,5)

26



Querying a Segment Tree

e sum(0,5)

26



Querying a Segment Tree

e sum(0,5)

26



Querying a Segment Tree

e sum(0,5)

26



Querying a Segment Tree

e sum(0,5) = 16 + 14 =30

26



Querying a Segment Tree

e sum(0,5) =16 + 14 =30

e We only need to consider a few vertices to get the entire range

26



Querying a Segment Tree

e sum(0,5) =16 + 14 =30
e We only need to consider a few vertices to get the entire range

e But how do we find them?

26



Querying a Segment Tree

[1[of7[8]s]9]3]

e sum(0,5)

27



Querying a Segment Tree

e sum(0,5)

27



Querying a Segment Tree

e sum(0,5)

27



Querying a Segment Tree

e sum(0,5)

27



Querying a Segment Tree

e sum(0,5)

27



Querying a Segment Tree

e sum(0,5)

27



Querying a Segment Tree - Code

int query(segment_tree *tree, int 1, int r) {
if (tree == NULL) return O;
if (1 <= tree->from && tree->to <= r) return tree->value;
if (tree->to < 1) return 0;
if (r < tree->from) return 0;
return query(tree->left, 1, r) + query(tree->right, 1, r);

28



Updating a Segment Tree

[1[of7[8]s]9]3]

29



Updating a Segment Tree

[1[of7[8]s]9]3]

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree

e update(3,5)

29



Updating a Segment Tree - Code

int update(segment_tree *tree, int i, int val) {
if (tree == NULL) return O;
if (tree->to < i) return tree->value;
if (i < tree->from) return tree->value;

if (tree->from == tree->to && tree->from == i) {
tree->value = val;
} else {

tree->value = update(tree->left, i, val) + update(tree->right, i, val);
}

return tree->value;

30



e Now we can

e build a Segment Tree
e query a range
e update a single value

31



e Now we can

e build a Segment Tree
e query a range
e update a single value

e But how efficient are these operations?

31



e Now we can

e build a Segment Tree in O(n)
e query a range
e update a single value

e But how efficient are these operations?

31



e Now we can

e build a Segment Tree in O(n)
e query a range in O(logn)
e update a single value

e But how efficient are these operations?

31



e Now we can

e build a Segment Tree in O(n)
e query a range in O(logn)
e update a single value in O(log n)

e But how efficient are these operations?

31



e Now we can
e build a Segment Tree in O(n)
e query a range in O(logn)
e update a single value in O(log n)

e But how efficient are these operations?

e Trivial to use Segment Trees for min, max, gcd, and other similar

operators, basically the same code

31



e Now we can

e build a Segment Tree in O(n)
e query a range in O(logn)
e update a single value in O(log n)

But how efficient are these operations?

Trivial to use Segment Trees for min, max, gcd, and other similar

operators, basically the same code

Also possible to update a range of values in O(log n) (Google for

Segment Trees with Lazy Propagation if you want to learn more)

31



Example problem: Supercomputer

e https://open.kattis.com/problems/supercomputer

32



