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Today we’re going to cover

• Review the Union-Find data structure, and look at applications

• Study range queries

• Quick look at Square Root Decomposition

• Learn about Segment Trees
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Union-Find

• We have n items

• Maintains a collection of disjoint sets

• Each of the n items is in exactly one set

• items = {1, 2, 3, 4, 5, 6}
• collections = {1, 4}, {3, 5, 6}, {2}
• collections = {1}, {2}, {3}, {4}, {5}, {6}

• Supports two operations efficiently: find(x) and union(x,y).
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Union-Find

• items = {1, 2, 3, 4, 5, 6}
• collections = {1, 4}, {3, 5, 6}, {2}

• find(x) returns a representative item from the set that x is in

• find(1) = 1
• find(4) = 1

• find(3) = 5
• find(5) = 5
• find(6) = 5

• find(2) = 2

• a and b are in the same set if and only if
find(a) == find(b)
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Union-Find

• items = {1, 2, 3, 4, 5, 6}
• collections = {1, 4}, {3, 5, 6}, {2}

• union(x, y) merges the set containing x and the set containing y

together.

• union(4, 2)
• collections = {1, 2, 4}, {3, 5, 6}
• union(3, 6)
• collections = {1, 2, 4}, {3, 5, 6}
• union(2, 6)
• collections = {1, 2, 3, 4, 5, 6}
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Union-Find implementation

• Quick Union with path compression
• Extremely simple implementation
• Extremely efficient

struct union_find {
vector<int> parent;
union_find(int n) {

parent = vector<int>(n);
for (int i = 0; i < n; i++) {

parent[i] = i;
}

}

// find and union
};
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Union-Find implementation

// find and union

int find(int x) {
if (parent[x] == x) {

return x;
} else {

parent[x] = find(parent[x]);
return parent[x];

}
}

void unite(int x, int y) {
parent[find(x)] = find(y);

}
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Union-Find implementation (short)

• If you’re in a hurry...

#define MAXN 1000
int p[MAXN];

int find(int x) {
return p[x] == x ? x : p[x] = find(p[x]); }

void unite(int x, int y) { p[find(x)] = find(y); }

for (int i = 0; i < MAXN; i++) p[i] = i;
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Union-Find applications

• Union-Find maintains a collection of disjoint sets

• When are we dealing with such collections?

• Most common example is in graphs
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Disjoint sets in graphs

1

2

3

4
5

6

7

• items = {1, 2, 3, 4, 5, 6, 7}
• collections = {1, 4, 7}, {2}, {3, 5, 6}
• union(2, 5)
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Example problem: Where’s My Internet??

• https://open.kattis.com/problems/wheresmyinternet
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Range queries

• We have an array A of size n

• Given i , j , we want to answer:
• max(A[i ],A[i + 1], . . . ,A[j − 1],A[j ])
• min(A[i ],A[i + 1], . . . ,A[j − 1],A[j ])
• sum(A[i ],A[i + 1], . . . ,A[j − 1],A[j ])

• We want to answer these queries efficiently, i.e. without looking
through all elements

• Sometimes we also want to update elements
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Range sum on a static array

• Let’s look at range sums on a static array (i.e. updating is not
supported)

1 0 7 8 5 9 3

• sum(0, 6)

= 33

• sum(2, 5)

= 29

• sum(2, 2)

= 7

• How do we support these queries efficiently?
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Range sum on a static array

• Simplification: only support queries of the form sum(0, j)

• Notice that sum(i , j) = sum(0, j)− sum(0, i − 1)

1 0 7 8 5 9 3

=

1 0 7 8 5 9 3

−

1 0 7 8 5 9 3
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Range sum on a static array

• So we’re only interested in prefix sums

• But there are only n of them...

• Just compute them all once in the beginning

1 0 7 8 5 9 3

1 1 8 16 21 30 33

• O(n) time to preprocess

• O(1) time each query

• Can we support updating efficiently?

No, at least not without
modification
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Range sum on a dynamic array

• What if we want to support:
• sum over a range
• updating an element

1 0 7 8 5 9 3

• sum(0, 6)

= 33

• update(3,−2)
• sum(0, 6)

= 23

• How do we support these queries efficiently?
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Range sum on a dynamic array

• What if we want to support:
• sum over a range
• updating an element

1 0 7 -2 5 9 3

• sum(0, 6) = 33
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= 23
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First attempt: Buckets

• Group values into buckets of size k

• E.g. k = 2:

1 0 7 8 5 9 3

• There are roughly n/k buckets

• Store the sum of elements inside each bucket:
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First attempt: Buckets

• Group values into buckets of size k

• E.g. k = 2:

1 0 7 8 5 9 3

• There are roughly n/k buckets

• Store the sum of elements inside each bucket:

1 15 14 3
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Buckets: Updating

1 0 7 8 5 9 3

1 15 14 3

• Updating is easy:
• change the array element
• recompute corresponding bucket

• update(3,−2)
• Time complexity: O(k)

• Easy to do in O(1), but doesn’t really matter (we’ll see why)
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Buckets: Querying

1 0 7 8 5 9 3

1 15 14 3

• Again we want to query over a range
• When a bucket is contained in the range, use the stored sum for the

bucket
• This (sometimes) allows us to “jump” over intervals of size k

• query(1, 5)

= 0+ 15+ 14 = 29

• What about time complexity?

• Only have to go inside at most two buckets (each end)
• Have to consider at most n/k buckets
• In total roughly n/k + 2k
• Time complexity: O(n/k + k)
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Buckets: Choosing k

• Now we have a data structure that supports:
• Updating in O(k)

• Querying in O(n/k + k)

• What k to pick?

• Time complexity is minimized for k =
√
n:

• Updating in O(
√
n)

• Querying in O(n/
√
n +
√
n) = O(

√
n)

• Also known as square root decomposition, and is a very powerful
technique

21
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Example problem: Supercomputer

• https://open.kattis.com/problems/supercomputer
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Range queries

• Now we know how to do these queries in O(
√
n)

• May be too slow if n is large and many queries

• Can we do better?
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Second attempt: Segment Tree

1 0 7 8 5 9 3

1 15 14

16 17

33

1 0 7 8 5 9 3

• Each vertex contains the sum of some segment of the array
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Segment Tree - Code

struct segment_tree {
segment_tree *left, *right;
int from, to, value;
segment_tree(int from, int to)

: from(from), to(to), left(NULL), right(NULL), value(0) { }
};

segment_tree* build(const vector<int> &arr, int l, int r) {
if (l > r) return NULL;
segment_tree *res = new segment_tree(l, r);
if (l == r) {

res->value = arr[l];
} else {

int m = (l + r) / 2;
res->left = build(arr, l, m);
res->right = build(arr, m + 1, r);
if (res->left != NULL) res->value += res->left->value;
if (res->right != NULL) res->value += res->right->value;

}
return res;

}
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Querying a Segment Tree

1 0 7 8 5 9

1 0 7 8 5 9

3

1 15 14

1 15 141 15 14

16

16

17

33

1 0 7 8 5 9 3

• sum(0, 5)

= 16+ 14 = 30

• We only need to consider a few vertices to get the entire range

• But how do we find them?
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Querying a Segment Tree - Code

int query(segment_tree *tree, int l, int r) {
if (tree == NULL) return 0;
if (l <= tree->from && tree->to <= r) return tree->value;
if (tree->to < l) return 0;
if (r < tree->from) return 0;
return query(tree->left, l, r) + query(tree->right, l, r);

}
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Updating a Segment Tree - Code

int update(segment_tree *tree, int i, int val) {
if (tree == NULL) return 0;
if (tree->to < i) return tree->value;
if (i < tree->from) return tree->value;
if (tree->from == tree->to && tree->from == i) {

tree->value = val;
} else {

tree->value = update(tree->left, i, val) + update(tree->right, i, val);
}
return tree->value;

}
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Segment Tree

• Now we can
• build a Segment Tree

in O(n)

• query a range

in O(log n)

• update a single value

in O(log n)

• But how efficient are these operations?

• Trivial to use Segment Trees for min, max, gcd, and other similar
operators, basically the same code

• Also possible to update a range of values in O(log n) (Google for
Segment Trees with Lazy Propagation if you want to learn more)
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Example problem: Supercomputer

• https://open.kattis.com/problems/supercomputer
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